Cryptographic accumulator

From Anoncoin Wiki
Jump to: navigation, search

One-way cryptographic accumulators allow parties to combine many elements into a constant-sized data structure. This structure allows one to prove efficiently that a specific value is contained within the set, without disclosing the value of the member. In Zerocoin, the network computes an accumulator A over all coin commitments (c1, ...., cn), along with the appropriate membership witnesses for each item in the set. The witness is simply the accumulator of all coins with the exception of one, and during a zerocoin spend transaction, the user needs to prove knowledge of one such witness.

Zerocoin accumulator

The accumulators used in zerocoin have the following properties:

  • The accumulator and its associated witnesses are publicly computable and verifiable with no trusted parties.
  • The accumulator binds the computing party to the values in the set.
  • The accumulator supports an efficient zero-knowledge proof of set membership.

The Zerocoin accumulator is defined as

A = uc1 c2 c3 ... c ... cn (mod N)

where the integers A, u and N are known to everyone. The coin c is a prime number that is a Pedersen commitment of a coin serial number S and random number r. The witness w of a coin c is defined as the accumulation of all coins with the exception of c

w = uc1 c2 c3 ... cn (mod N).

For computational efficiency, it is noted that the accumulator can be updated incrementally with a new value x by the equation

An+1 = Anx (mod N).

Given A, w, and v, it can be verified that the coin v was accumulated in A if

A' = wv mod N = A.

A zero-knowledge proof for knowledge of the coin c and witnesss w is given by Camenisch and Lysyanskaya (2002).

See also

References

Benaloh, J., and M. de Mare (1994). One-way accumulators: a decentralized alternative to digital signatures, in EUROCRYPT ’93, vol. 765 of LNCS, pp. 274–285.

Camenisch, J., and A. Lysyanskaya (2002). Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials, CRYPTO 2002, LNCS 2442, pp. 61–76.